A new “Zero Story” begins here.

The motive force behind advanced molding technology
Zero-molding aims to bring waste, defects and trouble vectors as close to zero as possible.
We have pursued broader functioning and technological innovation that has enhanced the potential of our fully electric molding machines. All of these technologies are taking you to Zero-molding.

Zero-molding
The motive force behind advanced molding technology
Zero-molding aims to bring waste, defects and trouble vectors as close to zero as possible.
We have pursued broader functioning and technological innovation that has enhanced the potential of our fully electric molding machines. All of these technologies are taking you to Zero-molding.
A new “Zero Story” begins here.

All electric machines that first came to light as the SE-S Series have added numerous performance improvements in their development as the SE-D and SE-DU machines.

With the following SE-DUZ Series, the introduction of innovative Zero-molding processes accelerated performance enhancements and successfully induced a paradigm shift towards molding that provides for new value creation – results that won hearty praise from users all over.

And, now, as a better response to the need for across-the-board innovation, we bring you the SE-EV Series, a new series of machines developed and designed to draw out the maximum potential of Zero-molding.

The SE-EV Series integrates powerful software and hardware to run that software to perfection into a graceful form that spells unparalleled potential for users.

Crystal of synergistic advancement of software and hardware technologies

Effects of Zero-molding

- Improved filling balance
- Prolonged life of molds
- Wide range of molding conditions
- Simplified molding conditions
- Big labor- and energy-savings

Machine technologies improved by Zero-molding

- Improved plasticization and injection accuracy
- Improved mold clamping precision
- Further improved energy saving technology
- New man-machine control

Zero-molding is a registered trademark of Sumitomo Heavy Industries, Ltd. in Japan.
MCM (Minimum Clamping Molding) uses means for detecting the minimum clamp force so as to enable molding at a low clamp force. Because clamp force is not applied beyond what is necessary, the benefits are far-reaching: reduced defects caused by gas, longer mold maintenance cycles, less damage to mold parts and reduced power consumption.

Evolved MCM via a high precision clamping mechanism

The SE-EV Series incorporates a linear guide support for the moving platen, a highly rigid frame and a high precision nozzle touch feature. Together, they improve precision at low clamp force in the form of clamping accuracy, clamp force balance, planarity and surface pressure. As a result, molding is stable even at extremely low clamp force.

Good surface pressure balance at low clamp force

With earlier machines, more than the necessary clamp force was needed to balance the surface pressure applied to the mold. The SE-EV Series incorporates a new feature that balances this surface pressure even at low clamp force.

Clamp force feedback

A new mold clamping mechanism improves the accuracy of clamp force detection. Because the actually measured clamp force is feed back to the machine, molding can be done at a stable clamp force without being affected by the thermal expansion of the mold. Furthermore, clamp force is kept at a more stable level than was possible with earlier machines, even when working at low clamp force.

Low vibrations in high cycle molding

Machine vibrations are greatly dampened even in high cycle molding, owing not only to the direct drive system but also a high precision platen support, a highly rigid frame and a servocontroller with a new algorithm.
FFC (Flow Front Control) optimizes flow control. This is made possible by ISC (Intelligent Servo Control) with a direct drive system at its core. Besides eliminating burrs and short shots, it markedly improves filling balance.

FFC evolved with the latest ISC II

The screw is accurately controlled by employing the latest advances in servo control to control low inertia, high response servomotors. Moreover, enhanced accuracy in injection pressure and weighing speed detection makes plasticization, filling and pressure holding processes more precise and stable. And, filling pressure is lower and more balanced.

Injection pressure detection
- Screw rotational speed detection
- Detection is 8x more accurate than with earlier machines, so plasticization is more stable.

Low inertia, high response servomotors (For injection and weighing)
- Improved injection speed response and stability in repeated operations

Newly developed servocontroller
- 20% higher performance with improved motor controllability and stability

Further improved filling balance

Owing to the latest in ISC II, filling balance is improved even for multiple-shot molding where filling pressure can readily become imbalanced. Little difference in molding mass occurs between cavities when completely filled with a single shot, and mass variations stabilize with multiple shots. Screw speed follow in flash processes is greatly improved even in high speed molding.

Injection speed control characteristics

The evolved ISC II improves basic performance, i.e., injection speed response, low speed injection follow, etc.
SPS (Simple Process Setting) gives top priority to operator operability, by adopting an operating system that allots a separate screen for each operation instead of setting up operations function by function as was done with earlier systems. Because a series of operations are set up on a single screen, operation is simple and free of errors and overlooked settings.

Completely revamps operability by incorporating the latest controller (NC-10)

For mistake-free operation
Operating keys are laid out to enhance operability when mounting molds and setting molding conditions, and to prevent accidents and mold damage caused by operational mistakes.

Intuitive touch-screen operation
Screens appearing on the 15.1-inch touch panel have intuitive designs with multiple pictograms that make operation easy even for first-timers.

Simple setting of molding conditions
Setting items have been simplified. There are about half the settings of earlier systems, which liberates operators from complicated setting operations and enables them to set stable conditions in a short amount of time.

Protection of molding conditions
A key lock features makes it possible to manage molding conditions. As a result, problems caused by incorrect settings such as rejects being sent to post-processing and mold damage are eliminated. Moreover, because key lock codes can be set for each operator, screens and settings can be changed by individual operators.

Safe, secure mold mounting
Anyone can easily mount molds by simply following the instructions displayed on the screen.

Support for global production environments
The operating system supports 15 languages, including English, Spanish, Japanese, Simplified Chinese, Traditional Chinese, Korean and more.
More environment-friendly

More efficient injection molding processes

Lower power consumption

Owing to the effects of zero-molding efforts, power consumption of the SU-EV Series has been reduced by 10% compared to molding with earlier machines (SE-DU Series). Moreover, mechanical efficiency has been improved by lessening the friction of the clamping and injection mechanisms, and the amount of radiated heat has been reduced with a multi-layered cover on the heating cylinder, which combine to further reduce power consumption.

![Comparison of power consumption - motor and heater, during molding](image)

ie Pump unit

With core tractor drives, energy losses can be high because the pump used with conventional hydraulic units runs all the time. With this ie pump unit, the pump is driven by a servomotor, therefore the pump remains off when core mold operations are not being performed.

![ie pump unit diagram](image)

Waste reduction 1

Less purge clamping

When changing out resins on earlier machines, purging took a long time to complete, which resultantly consumed a large quantity of resin. With the SE-EV Series, a resin change purge mode cuts purging time in half.

![Purge weight per one shot](image)

Waste reduction 2

Reduced grease consumption

Optimizing grease quality and the lubrication system both reduces grease consumption and improves maintenance.

![Grease lubrication device / system](image)

Zero-molding is a registered trademark of Sumitomo Heavy Industries, Ltd. in Japan.
Specifications optimized for a diversity of molded products

Incorporation of a new concept plasticization system (SL Screw) possible

An SL screw that has been proven to prevent gas release, spotting and burning as well as to lessen screw maintenance can be incorporated into the machine. It maintains stability over the long-run in molding operations where plasticization stability is directly linked to molding quality.

Support for a diversity of resins

Injection molded products are subjected to increasing performance requirements: heat resistance of precision parts, alternatives to metallic parts, etc. Sumitomo makes available screws of differing designs, materials and coatings that customers can match to resin properties, whether for high cycle molding with an olefin resin or molding of structural parts using a resin with a high content of filler.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Ion-nitride</th>
<th>Plated</th>
<th>Wear/corrosion-resistant A</th>
<th>Wear/corrosion-resistant B</th>
<th>Wear/corrosion-resistant C</th>
<th>High temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating cylinder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw tip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable resin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heavy duty Injection

In molding operations that require high shape accuracy as is the case with thick-walled products and complicated shapes, a high torque injection motor is needed to keep injection pressure high and filling and pressure holding processes need to be long. High load specifications (high speed type/low speed type) that satisfy hardware requirements for cycling and filling and pressure holding time are available for selected.

<table>
<thead>
<tr>
<th>Type</th>
<th>Plasticizing unit</th>
<th>Screw diameter (mm)</th>
<th>U speed max. (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE100EV (980kN)</td>
<td>C110</td>
<td>S 22, 25, 28</td>
<td>500</td>
</tr>
<tr>
<td>SE130EV (1270kN)</td>
<td>C160</td>
<td>S 25, 28, 32</td>
<td>350</td>
</tr>
<tr>
<td>SE180EV (1760kN)</td>
<td>C250</td>
<td>M 28, 32, 36</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>C360</td>
<td>M 32, 36, 40</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>C450</td>
<td>M 36, 40, 45</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>C560</td>
<td>M 40, 45, 50</td>
<td>350</td>
</tr>
</tbody>
</table>
Standard Equipment

- **Plasticizing & injection unit**
 - 1 SD ion-nitride screw assembly (Open nozzle)
 - 2 Heater 5 division control (ø18~20 - 4 division)
 - 3 Water cooling jacket temperature control device
 - 4 Standard heated cylinder cover
 - 5 2-modes temperature control (production/standby)
 - 6 Cold screw startup protection (Interlock variable timer attaching)
 - 7 Protection clamp (with limit switch)
 - 8 Programming control of injection
 - 9 Programming control hold pressure
 - 10 Plasticizing program – multi-stage control
 - 11 Screw pull back (after screw rotating/after holding pressure)
 - 12 V-P switchover controller (pressure, position)
 - 13 Injection/holding response 10-mode
 - 14 Mold open operation during plasticizing (needle nozzle drive control)
 - 15 Sprue break stroke remote setting (Detection of nozzle touch, Moving time)
 - 16 High nozzle touch force and precision unit (Nozzle touch force: 3 stages changeable)

- **Clamp unit**
 - 1 Center press plate
 - 2 Movable platen support device – linear guide
 - 3 Programmed control of mold opening/closing speed (5-step/3-step)
 - 4 Mold protection
 - 5 Low pressure clamping unit
 - 6 Standby mode for mold mounting (low mold closing/opening speed)
 - 7 Remote control of clamp force

Optional Equipment

- **Plasticizing selection**
 - 1 Hard chromium plating screw assembly
 - 2 Wear & corrosion resistant A screw assembly
 - 3 Wear & corrosion resistant B screw assembly
 - 4 Wear & corrosion resistant C screw assembly
 - 5 High-temperature screw assembly (Max. temp. 450°C)
 - 6 High-temperature screw assembly (Max. temp. 450°C)
 - 7 SL screw assembly
 - 8 Screw tip set - rotation type TiN coating
 - 9 FTC nozzle (Open nozzle: ø18~ø36. Less than SE130EV)
 - 10 Extension nozzle
 - 11 Cup nozzle
 - 12 Needle valve shut-off nozzle (Nozzle open/close with pneumatic cylinder)
 - 13 High capacity heater
 - 14 Zone 1 high capacity heater (Less than C160 are standard)
 - 15 High insulated cylinder cover – 3 stratified covers

- **Molding system**
 - 1 FTC nozzle electric control circuit (ø18~ø36 screw)
 - 2 FTC nozzle electric control circuit (ø18~ø36 screw)
 - 3 Needle valve shut-off nozzle drive circuit
 - 4 Resin temperature finder (only available with needle valve shut-off nozzle)
 - 5 Placing resin inlet of cooling water jacket
 - 6 Standard type thermometer
 - 7 Hopper swivel mounting plate (unavailable for C50)
 - 8 High efficiency nozzle contact (Nozzle touch force release pressure)
 - 9 V/P switchover by mold cavity pressure
 - 10 Heavy duty injection
 - 11 GS loader control circuit

- **Control & Extension**
 - 1 Leak circuit breaker (AC200V, 220V 3Ø35A+E Japan and Asia only)
 - 2 Mold temperature monitor 2 zone (without thermocouple and type K) (unavailable for SE10/12)
 - 3 Mold temperature monitor 3 zone (without thermocouple and type K) (unavailable for SE10/12)
 - 5 Mold temp. controller (2 zone)
 - 5 Mold temp. controller (2 zone)
 - 6 Auxiliary facility monitor (STD.2ch)
 - 7 Analog circuit output for molding profile
 - 8 Automatic starting system (Heater+water supply+external output signal)
 - 9 Revolving alarm lamp
 - 10 Multi function 3 colors LED alarm lamp
 - 11 Motion 07
 - 12 Lines closed circuit cooling water piping connection (with flow detector, stop valve)
 - 13 Lines closed circuit cooling water piping connection (with flow detector, stop valve)
 - 14 Remote control of mold space
 - 15 Ejector 2-speed control
 - 16 Ejector protrusion during mold opening
 - 17 Ejector protrusion during mold closing
 - 18 Ejector unit with brake
 - 14 Valve gate drive circuit (control circuit only)
 - 15 Ejector plate return signal (Input signal for molding machine) Connecting by metal connector
 - 16 Take-out robot connection circuit
 - 17 Ejected products sensor circuit

Control unit

- 1 Zero-molding system
 - 2 15 inch TFT Color LCD screen
 - 3 Moving profiles functions (mold profiles storage, cursor, display and so on)
 - 4 Statistics product quality control (Actual value control. Quality transition graph)
 - 5 Production control
 - 6 Internal memory of mold conditions
 - 7 Automatic starting system (heater warming, heater start, machine stop)
 - 8 Operation guide for maintenance
 - 9 USB connection circuit
 - 10 Signal output for machine condition
 - 11 Auxiliary facility monitor (1ch)
 - 12 Cylinder heater temperature monitor (all zones)
 - 13 Heater band burnout monitor
 - 14 Alarm monitor (7 items)
 - 15 Abnormal history (item and time)

Spare parts and accessories

- 1 Spare parts (Mechanical parts: Brake lining, Lub. parts)
 - 2 Spare parts (Electrical parts: Thermocouple)
 - 3 Spare parts for expost. (Encoder,Limit switch, and Inductive proximity sensors)
 - 4 Leveling pads (for one machine)
 - 5 Anchor bolts (for one machine)
 - 6 Locating trim (Transition 1) (øD.110 - OD.120) (only for SE180EV)
 - 6 Locating trim (Transition 2) (øD.110 - OD.120) (only for SE180EV)
 - 8 Tools A
 - 9 Ejector rods
 - 10 Grease gun
 - 11 Grease cartridge for Automatic Lub (700cc)
 - 12 Grease cartridge for Manual Lub (400cc) Plasticizing
 - 13 Easy Clamp

Note 1: Specifications may subject to change without notice for performance improvements.

Note 2: The export of this product for use for or in development and/or production of massive destruction arms and weapons (nuclear weapons, biological weapons, missiles) or the export of this product to any persons, party or corporation engaged or involved in the development and/or production of above described goods is subject to the authorization of the government pursuant to Foreign Exchange and Foreign Trade Control Law.

Note 3: The overall machine length is also up 100mm.

Note 4: Input / output signals are provided with dry contact (zero voltage). (If signal required voltage, please request for such option)

Zero-molding is a registered trademark of Sumitomo Heavy Industries, Ltd. in Japan.
Main specification

Items

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit</th>
<th>SE50EV</th>
<th>SE75EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clamp system</td>
<td>Double toggle (5 point)</td>
<td>Double toggle (5 point)</td>
<td></td>
</tr>
<tr>
<td>Clamp force</td>
<td>kN</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>Clearance between tie-bars (L×H)</td>
<td>mm</td>
<td>360×360</td>
<td>410×410</td>
</tr>
<tr>
<td>Clamp platens (L×H)</td>
<td>mm</td>
<td>500×500</td>
<td>580×580</td>
</tr>
<tr>
<td>Daylight</td>
<td>mm</td>
<td>600</td>
<td>710</td>
</tr>
<tr>
<td>Mold opening stroke</td>
<td>mm</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Platen speed max.</td>
<td>mm/s</td>
<td>MAX.1200</td>
<td>MAX.1200</td>
</tr>
<tr>
<td>Mold installation height (min.~max.)</td>
<td>mm</td>
<td>160~350</td>
<td>160~410</td>
</tr>
<tr>
<td>Locating ring diameter</td>
<td>mm</td>
<td>φ 100</td>
<td>φ 100</td>
</tr>
<tr>
<td>Ejector type</td>
<td>Electric (5 point)</td>
<td>Electric (5 point)</td>
<td></td>
</tr>
<tr>
<td>Ejector force</td>
<td>kN</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>Ejector speed max.</td>
<td>mm/s</td>
<td>MAX.333</td>
<td>MAX.333</td>
</tr>
<tr>
<td>Ejector stroke</td>
<td>mm</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Injection unit

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit</th>
<th>SE50EV</th>
<th>SE75EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticizing capacity</td>
<td></td>
<td>C65</td>
<td>C110</td>
</tr>
<tr>
<td>Screw diameter</td>
<td>mm</td>
<td>18 20 22 25 22 25 28 28 32 22 25 28 25 28 28 32 28 32 36</td>
<td>100</td>
</tr>
<tr>
<td>Injection pressure max.</td>
<td>MPA</td>
<td>274 265 220 170 274 212 174 274 218 167 274 212 174 274 218 167 217 284</td>
<td>171</td>
</tr>
<tr>
<td>Hold presssure max.</td>
<td>MPA</td>
<td>274 265 220 170 274 212 174 274 218 167 274 212 174 274 218 167 217 284</td>
<td>171</td>
</tr>
<tr>
<td>Theoretical injection capacity</td>
<td>cm³</td>
<td>20 25 30 38 40 51 64 51 64 84 40 51 64 51 64 84 86 113 143</td>
<td></td>
</tr>
<tr>
<td>Max. injected mass (GPPS)</td>
<td>g</td>
<td>19 24 28 37 38 49 61 49 61 80 38 49 61 49 61 80 83 108 137</td>
<td></td>
</tr>
<tr>
<td>Plasticizing rate max.</td>
<td>kg/h</td>
<td>10 13 18 26 18 26 37 26 37 53 18 26 37 26 37 53 37 53 76</td>
<td></td>
</tr>
<tr>
<td>Injection rate max.</td>
<td>cm³/s</td>
<td>140 173 209 270 190 245 308 196 246 322 190 245 308 196 246 322 216 281 356</td>
<td></td>
</tr>
<tr>
<td>Screw stroke</td>
<td>mm</td>
<td>78 104</td>
<td>104</td>
</tr>
<tr>
<td>Injection speed max.</td>
<td>mm/s</td>
<td>550 500</td>
<td>400 400</td>
</tr>
<tr>
<td>Screw driving system</td>
<td>Electric</td>
<td>Electric</td>
<td>Electric</td>
</tr>
<tr>
<td>Screw speed max.</td>
<td>min⁻¹</td>
<td>400 400</td>
<td>400 400</td>
</tr>
<tr>
<td>Number of temperature control zone</td>
<td></td>
<td>4 5 5 5 5 5 5</td>
<td>5 5 5 5</td>
</tr>
<tr>
<td>Heater capacity</td>
<td>kW</td>
<td>2.9 3.3 3.6 4.2 3.6 4.2 4.8 4.2 4.8 5.4 3.6 4.2 4.8 4.8 4.8 5.4 6.5 7.5 8.4</td>
<td></td>
</tr>
<tr>
<td>Nozzle contact force</td>
<td>kN (lbf)</td>
<td>14 14 14</td>
<td>14 43 43</td>
</tr>
<tr>
<td>Moving stroke</td>
<td>mm</td>
<td>250 250</td>
<td>250 285</td>
</tr>
<tr>
<td>Protrusion</td>
<td></td>
<td>30 30 30</td>
<td>30 30 45</td>
</tr>
<tr>
<td>Hopper capacity</td>
<td>l</td>
<td>15 15 15</td>
<td>15 15 30</td>
</tr>
</tbody>
</table>

Machine dimension & mass

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit</th>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine dimension (L×W×H)</td>
<td>mm</td>
<td>3617×1144×1575</td>
<td>3617×1144×1575</td>
<td>3617×1144×1575</td>
<td>4187×1212×1566</td>
<td>4187×1212×1566</td>
</tr>
<tr>
<td>Machine mass</td>
<td>t</td>
<td>2.2 2.3 2.4 3.0 3.1 3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note1. The maximum injection pressure and hold pressure are calculated values, which are the outputs of the machine, but not the resins pressures.

Note2. The maximum injection pressure and hold pressure are no pressures that can be generated continuously.

Note3. The total length of the machine is the value measured up to the advance position of the injection unit with a smallest screw installed.

Note4. Specifications subject to change without notice for performance improvement

Note5. The dimensions are Japanese specification.

◇This series originally comply to safety standards of Japan, the US, in addition, also China GB22530 and KC mark.
Injection Pressure Max.

<table>
<thead>
<tr>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw speed max. min⁻¹</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Moving stroke mm</td>
<td>250</td>
<td>285</td>
</tr>
<tr>
<td>Screw diameter S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Heater capacity kW</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Injection speed max. mm/s</td>
<td>550</td>
<td>500</td>
</tr>
<tr>
<td>Platen speed max. mm/s</td>
<td>MAX.1200</td>
<td>MAX.1200</td>
</tr>
<tr>
<td>Nozzle contact force kN</td>
<td>14</td>
<td>43</td>
</tr>
<tr>
<td>Screw stroke mm</td>
<td>78</td>
<td>104</td>
</tr>
<tr>
<td>Plasticizing rate max. (GPPS) kg/h</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Machine dimension & mass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locating Ring Diameter mm

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locating ring diameter mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clamp System

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamp system</td>
<td>Double toggle (5 point)</td>
<td>Double toggle (5 point)</td>
<td>Double toggle (5 point)</td>
<td>Double toggle (5 point)</td>
</tr>
</tbody>
</table>

Mold Installation Height (min.)

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold installation height (min.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mold Opening Stroke mm

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold opening stroke mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ejector Speed max. mm/s

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejector speed max. mm/s</td>
<td>MAX.333</td>
<td>MAX.333</td>
<td>MAX.333</td>
<td>MAX.333</td>
</tr>
</tbody>
</table>

Plasticizing Capacity C65 C110 C160 C110 C160 C250 C110 C160 C250 C360 C160 C250 C360 C450 C250 C360 C450 C560

Screw Diameter S

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw diameter S</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

Plasticizing Rate max. (GPPS) kg/h

<table>
<thead>
<tr>
<th>SE50EV</th>
<th>SE75EV</th>
<th>SE100EV</th>
<th>SE130EV</th>
<th>SE180EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticizing rate max. (GPPS) kg/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>